The Switch in a Genetic Toggle System with Lévy Noise
نویسندگان
چکیده
A bistable toggle switch is a paradigmatic model in the field of biology. The dynamics of the system induced by Gaussian noise has been intensively investigated, but Gaussian noise cannot incorporate large bursts typically occurring in real experiments. This paper aims to examine effects of variations from one protein imposed by a non-Gaussian Lévy noise, which is able to describe even large jumps, on the coherent switch and the on/off switch via the steady-state probability density, the joint steady-state probability density, and the mean first passage time. We find that a large burst of one protein due to the Lévy noises can induce coherent switches even with small noise intensities in contrast to the Gaussian case which requires large intensities for this. The influences of the stability index, skewness parameter and noise intensity on the on/off switch are analyzed, leading to an adjustment of the concentrations of both proteins and a decision which stable point to stay most. The mean first passage times show complex effects under Lévy noise, especially the stability index and skewness parameter. Our results also imply that the presence of non-Gaussian Lévy noises has fundamentally changed the escape mechanism in such a system compared with Gaussian noise.
منابع مشابه
Noise in Genetic Toggle Switch Models
In this paper we study the intrinsic noise effect on the switching behavior of a simple genetic circuit corresponding to the genetic toggle switch model. The numerical results obtained from a noisy mean-field model are compared to those obtained from the stochastic Gillespie simulation of the corresponding system of chemical reactions. Our results show that by using a two step reaction approach...
متن کاملStochastic models for regulatory networks of the genetic toggle switch.
Bistability arises within a wide range of biological systems from the lambda phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in t...
متن کاملLévy noise induced switch in the gene transcriptional regulatory system.
The study of random fluctuations in a gene transcriptional regulatory system is extended to the case of non-Gaussian Lévy noise, which can describe unpredictable jump changes of the random environment. The stationary probability densities are given to explore the key roles of Lévy noise in a gene transcriptional regulatory system. The results demonstrate that the parameters of Lévy noise, inclu...
متن کاملIntrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches
During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules-morphogens-guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cel...
متن کاملStochasticity and noise-induced transition of genetic toggle switch
The ability to predict and analyze the function of genetic circuits will enhance the design of autonomous, programmable, complex regulatory genetic structures. An abundance of modeling techniques has recently been developed to delineate simple genetic structures in terms of their constituents. Simple systems with characteristics of feedback inhibition, multi-stability, switching, and oscillator...
متن کامل